第47章 妃嫔(***发)[第1页/共3页]
2、在平面直角坐标系中,调集c={(x,y)|y=x}表示直线y=x,从这个角度看,调集d={(x,y)|方程组:2x-y=1,x4y=5}表示甚么?调集c、d之间有甚么干系?请别离用调集说话和多少说话申明这类干系。
4、全部有理数构成的调集叫做有理数集。记作q。
3、函数的简朴性态
区间的称呼区间的满足的不等式区间的暗号区间在数轴上的表示
card(a)card(b)=card(aub)card(anb)
b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数干系的体例便是表格法。例:在实际利用中,我们常常会用到的平方表,三角函数表等都是用表格法表示的函数。
2、列举法:把调集的元素一一列举出来,并用“{}”括起来表示调集
3、我们能够把相称的调集叫做“等集”,如许的话子集包含“真子集”和“等集”。
1、全部非负整数构成的调集叫做非负整数集(或天然数集)。记作n
2补集:对于一个调集a,由选集u中不属于调集a的统统元素构成的调集称为调集a相对于选集u的补集。简称为调集a的补集,记作cua。
调集合元素的个数
</script>
a):剖析法:用数学式子表示自变量和因变量之间的对应干系的体例便是剖析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2y2=r2
1、变量的定义:我们在察看某一征象的过程时,常常会碰到各种分歧的量,此中有的量在过程中不起窜改,我们把其称之为常量;有的量在过程中是窜改的,也就是能够取分歧的数值,我们则把其称之为变量。注:在过程中另有一种量,它固然是窜改的,但是它的窜改相对于所研讨的工具是极其藐小的,我们则把它看作常量。
调集的表示体例
1、并集:普通地,由统统属于调集a或属于调集b的元素构成的调集称为a与b的并集。记作aub。(在求并集时,它们的大众元素在并集合只能呈现一次。)
3、真子集:如何调集a是调集b的子集,但存在一个元素属于b但不属于a,我们称调集a是调集b的真子集。
2、统统正整数构成的调集叫做正整数集。记作n或n。
5、全部实数构成的调集叫做实数集。记作r。
2、函数的单调性:如果函数在区间(a,b)内跟着x增大而增大,即:对于(a,b)内肆意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。如果函数在区间(a,b)内跟着x增大而减小,即:对于(a,b)内肆意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
1、有限集:我们把含有有限个元素的调集叫做有限集,含有无穷个元素的调集叫做无穷集。
注:一个函数,如果在其全部定义域内有界,则称为有界函数
即cua={x|x∈u,且xa}。
3、补集:
1选集:普通地,如果一个调集含有我们所研讨题目中所触及的统统元素,那么就称这个调集为选集。凡是记作u。
2相称:如何调集a是调集b的子集,且调集b是调集a的子集,此时调集a中的元素与调集b中的元素完整一样,是以调集a与调集b相称,记作a=b。
3、邻域:设a与δ是两个实数,且δ>0.满足不等式│x-a│<δ的实数x的全部称为点a的δ邻域,点a称为此邻域的中间,δ称为此邻域的半径。
请收藏本站:m.zbeen.com